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ABSTRACT

An analytic solution to a particular Marshak problem is given.

The radiative tfansfer model used is the gray, non-equilibrium diffusion
approximation which allows thé radiation and material fields to be out

of equilibrium. This solution should be useful as a reference problem

for validating time depen&ent radiative transfer computer codes, as well as
investigating the convergehce, as a function of space and time step size,
for such codes. The coupling of the radiation field to the material field
in a multigroup code, a difficult numericél problem, can also be tested
against this solution. Typical numerical results are given for surface
quantities, integral quantities, and the distribution of radiative energy

and material temperature as a function of space and time.

“Work performed under the auspices of the
U.S. Department of Energy by the Lawrence
Livermore Laboratory under contract number
W-7405-ENG-48."



1. Introduction

A difficult class of engineering problems is time dependent radiative
transfef in which the radiation and material energy fields are allowed to
interact. The difficulty stems from the underlying complexity of the equa-
tion of radiative transfer, the‘need to include the energy balance equation
for the material in the problem description, and the gemerally complex:
dependence of the material properties (opacities and heat capacity) on the
relevant independent variables.

Because of this complexity, most, if not all, realistic problems of
this type must be solved numerically. Many computer codes exist in the
engineering and scientific community for such problems, including the ef-
fects of hydrodynamic motion if this is an important effect. As with all
computer codes, it is desirable (essential) to have benchmark or referencé
problems.fof which analytic solutions are known for purposes of verifying
the numerical procedures used. In addition, such analytic solutions allow
one to test the sensitivity of the code to changes in mesh size (in space
or time) in an unambiguous way. Such test problems are almost nonexistent
for this class of radiative transfer problems, again because of the com-
plexity of the underlying equations.

One semi-analytic solution that does exist in the literature is the
(1)

so-called Marshak wave problem In the heat transfer context, this

- corresponds to an initially cold halfspace of material with radiation in-

cident upon the surface. Under the simplifications introduced by Marshak,
this problem admits a similarity solution which reduces the problem to the
solution of a second order nonlinear ordinary differential equation. This
cquation cannot-be solved analytically, but numerical results have been
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obtained by Kass and O'Keeffe(“) in the context of chemical diffusion.
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The solution exhibits a wavefront which penetrates the slab with the
characteristic square root of time bechavior. To obfain this semi-
analytical solution, Marshak made the assumption that the material and
radiation fields are in equilibrium; i.e., the radiation field at any
space and time point is Planckian at the local material temperature. This
has the great simplifying effect of eliminating the equation of transfer
from the problem.- Modern radiative transfer treatments do not in general
make this simplifying assumption. The radiation and material fields are
allowed to develop separately according to a more accurate physical‘de-
scription, with an interaction term between the two fields which allows
equilibration only when the physics of thé problem dictates such an
equilibrium. |

In this paper, we give a solution to the Marshak wave problem allowiﬁé
non-equilibrium between the radiation and material fields. In order to
make the problem tractable analytically, we need introduce a specific
dependence of the'matérial heat capacity.on the material temperature. We
assume that this heat capacity is proportional to the cube of the tempera-
ture. Because of this, our solution probably_does not cbrrespond to any
interesting physical prcblem, as does the classic Marshak treatment.
However, our intent is different from that of Marshak. He was inter-
ested in modeling, in a semi-quantitative manner, a particular physical
phenomena. This necessitated simplifying the equations to the point where
a solution was possible, while maintaining as much as possible the essen-
tial physics of the problem. We wish to maintain the underlying equations
and are willing to relax the physical content of the problem to obtain a
detailed solution. Radiative transfer codes are meant to handle an

arbitrary temperature dependence of the heat capacity, and. thus the



solution presenfed here should provide a useful test problem for such
codes. |

To our knowledge, no other analytic solution, al]dwing for non-
cquilibrium in a time dependent problem, exists in the literature. We
regard the present solution as a first step in generating useful test
problems. Hopefully, other solutions, involving more detailed physics,
can be generated in the future to give additional test problems against

which radiative transfer codes can be validated.



2. The Problem and General Solution

We consider a semi-infinite purely absorbing medium occupying 0 <2 <o,
The medium is assumed to be homogeneous and, at t=0, to be at a zero tempera-
ture with no radiation field present. Commencing at t=0, we allow a time
independent radiative flux to impinge upon the face at z=0. We wish to
compute, as a function of space and time, the material temperature and the
radiation field. Hydrodynamic motion and heat conduction are assumed un-
important, and the‘radiative transfer is modeled as a one group (gray)
process in the diffusion (P-1 or two T) description. The equation of trans-

(3

fer is then

c BEr(z,t)
9z [SK(T) oz

3E_(z,t)
L g ] = CK(T)[aT4(Z,t)—Er(Z,t)] , (1)

ot
where z is the spatial variable, t is the temporal variable, Er(z,t) is the
radiation energy density, T(z,t) is the material temperature, x(T) is the
absorption cross section (opacity), ¢ is the speed of light, and a is the

radiation constant. The Marshak (Milne) boundary condition on Eq. (1) at

2=0 1is

2 9. (0,t)
Gerro oy s T

F. o ' (2)

Er(o’t) - inc

where Finc is the flux incident upon the medium at z=0. At z=%, we have the
boundary condition

E.(%,t) = 0 . (3)
The initial condition is that of no radiation present, i.e.,

E (2,00 =0 . ‘ o (4)

The material energy balance equation is

¢, (T) ngﬁgEl = ek(M[E_(z,1) - aT*(z,0)] , (5)



where cv(T), the heat capacity per unit volume, is related to the material

energy density Em by

T
E (T =f0 dT'e (T') . (6)

The initial condition on Eq. (5) is taken to be

T(z,0) = O . (7

Equation$ (1) and (5), together with the boundéry and initial condi-
tions, Eqs. (2), (3), (4), and (7), constitute two equ#tions for the two
unknowns Er(z,t) and T(z,t). For a general temperature dependence of k(T)
and cv(T), these equations are clearly nonlinear. However, if we consider
the classic radiative transfer problem of k independent of temperature, and
further assume <y proportional to TS, i.e.,

3
c, = oT” , . | (8)

then our equations become linear in Er and T4, and we can use classic
analysis to obtain a solution. Before proceeding with the solution, we
recast the equations into dimensionless form. We write the incident flux

in terms of an effective temperature einc as.

. = 00, s
inc inc

(9)

where 0 is the Stefan-Boltzmann constant, ¢ = ac/4. Additionally, we define

a radiation temperature 6(z,t) by the equation
4
E_(z,t) = a8 (z,t) . (10)

We introduce the dimensionless independent variables

x = V/3kz , (11)
vz (e, (12)



and define new dependent variables as

| 4
u(x,1) = '[e—é-?ﬁ-)-] > (13)
inc
4 )
vix,m) = (R L (14)
- inc ’

Then Eqs. (1) and (5) take the dimensionless form

¢ dulx,T) 32u(x,T)
- >

AT A = v(x,7) - u(x1) , (15)
. X :
T - oux,1) - V(T R (16)

9T
where we have defined the parameter

160
ca ° o (17)

IH

€

The boundary and initial conditions, Egs. (2), (3), (4), and (7) become in

these new variables

u(0,1) - :/_32_@.%11= 1, | o (18)

u(®,t) = u(x,0) = v(x,0) =0 . (19)

Equations (15) through (19) are the equations we shali solve,

Setting the‘parameter € to zero corresponds to the '"no retardation"
approximation. That is, €=0 is equivalent to assuming that, as far as
the radiative transfer process is concerned, the speed of light is infinite.
This implies that the radiation field instantly comes into a steady state
distribution with the material temperature distribution at any time t. It
should be emphasized that €=0 does not imply u=v (Er=EnP’ because Eq. (15)
contains a spaiiai streaming term. Only in the absence of spatial gradients

does the €=0 approximation imply u=v, i.e., complete thermodynamic equilibrium.




The classic.Marshak treatment corresponds to setting€ =0 and ignoring
spatial gradients in the equation of transfer, thus obtaining u=v, or,
equivalently, éssﬁming the radiation field to be Planckian at the local
temperature.,

Before proceceding with the solution, it may be useful to say a few
words about the radiative transfer model we have employed. Rather than
dealipg with the more complex integro-differential or integral equation
of transfer, we have used the lowest order sphefital harmonic approxima-
tion, commonly called the P-1 or 2-T diffusion approximation. One would
expect, and exﬁerience bears it out, that for optiéally thick svstems
the P-1 approximation should be quite accurate. This is the case for
the Marshak wave problem. Thus our solution is a rigorous test problem
for codes using the P-1 approximation, but in addition provides a rcason-‘
ably good test problem for transport codes as well. We have also used
a one group, or gray, radiative transfer description. Again, for opti-
cally thick systems such a description is often adequate. However, even
the multigroup aspect of multigroup codes can be partially tested against
the solution given here. If the code is used in a multigroup mode to
compute a problem in which the opacity is, in fact, independent of fre-
quency, then a one group description is rigorously correct, and the pre-
sent test problem gives the analytic result. This is particularly impor-
tant since the coupling of the radiation field to the material is a
difficult aspeét of multigroup codes. This aspect can be tested, as just
described, against the analytic solution given here.

To solve Eqs; (15) through (19), we introduce the Laplace transform

f(s) of a function f(t) by the definition




E(s) = f dte”STe(T) .
0

Taking the Laplace transform of Eqs. (15), (16), (18), and (19) gives

.
ES\](X,S) -v_a__u_(iz‘?_sl
9x

sv(x,s) = u(x,s) - v(x,s) ,

2 3u(0,s) _1
‘/-3— §x - s’

u(0,s) -
u(e,s) =0 .

Equation (22) gives

H(x,5) = (Gpu,s) ,

and using this in Eq. (21) gives

2-
i—‘%g‘zﬁ = BA()iatx,s)
X

where we have defined

8%(s) = (2P [1+e(s+1)] .

The solution to Eq. (26) subject to the boundary condition at x=», Eq.

is

u(x,s) = I.((s)e'B(s)x .

The constant K(s) is determined from the condition at x=0, Eq. (23).

find

/gé—B(s)x
s[vV3+28(s)] ’

u(x,s) =

and Eq. (25) then gives

= v(x,s) - ﬁ(x,Sj ,
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(20)

(21)

(22)
(23)

(24)

(25)

(26)

(27)

(24),

(28)

(29)




';33-6 (s)x
s(s+1) [V3+2B8(s)]

v(x,s) = (30)

The solutions for u(x,t) and v(x,t) follow from Eqs. (29) and (30) by the

Laplace inversion theorem

£(1) = -2-1-17-{ ‘/; dse3TE(s) | (31)

where the integration contour C is a line parallel to the imaginary s axis
to the right of all the singularities of f(s).
From the large s and small s limits of Eqs. (29) and (30), relating

thse to the small T and large T limits of u(x,T) and v(x,T), respectively,

we have
u(x,0) = v(x,0) =0, ' (32)

ulx, 1t} -+ v(x,T) > 1, (33)

T T~

where we have used the theorems

lim[s¥(s)] = lim{£f(T)] , (34)
e 0 '

lim[s¥(s)] = lim[£(T)] . (35)
s+0 . T

Equation (32) is just a restatement of the initial condition [see Eq. (19)],
and Eq. (33) states that at infinite time, both the radiation and material
temperatures approach a constant, equal to the temperature of the impinging

flux.

11




3. The Solution for £=0

Because of the complex s dependence of u(x,s) and v(x,s) as given by
Eqs. (27), (29), and (30), we initially consider the €=0, no retardation,

case. We reexamine, for €=0, the limits at T=0 and T=®. We find, at

T::G”

ul(x,t) =+ v(x,t) > 1, ' (36)
T-0 T® :

just as before. However, for 1=0 we find a different behavior since B(s)

behaves differently as s+ for €=0, i.e., B(®) = 1 for é=0. This gives

-X

u(x,0) = & (37)
(/3+2)

v(x,0) = 0 . | (38)

That is, the material field is still zero at T=0; consistent with the ini-
tial condition, but the radiation field is not zero at t=0 for e=0. This
is because the radiation field, in the absence of retardation effects, im-
mediately comes to a steady state consistent with a zero material field,
but correspondiﬁg to an incoming flux of radiation. Equation (37) is just
the steady state solution of the P-1 approximation under these conditions.
Thus for a small, but non zero value of €, the solution for u(x,t) will
exhibit a boundary layer in the time variable, leading to a rapidly varying
time behavior fdr small times.

If we examine the surface behavior of thé radiation and material

fields as a function of time, we need invert, using

B(s) = [317 (39)

in Eqs. (29) and (30) at x=0,

V3 /s+1

u(0,s) = - ,
s[V3 /s+1 + 2/5]

(40)

12



v(0,s) = /3 Jsel . (41)

§($+1)[/§ /s+1 + 2/5])

The singularities of u(0,s) and v(0,s) are clearly identical, and include
branch points at s=0 and s=-1. We define the proper branches as those

which give a positive square root for s lying on the real positive axis.
Extending both branch cuts along the negative real axis, we have a composite
branch cut for -1 < s < 0. The functions are analytic on the negative real
éxis for s < -1, the effects of the two branch cuts having cancelled. These
functions also have a simple pole at s=0. A second pole exists at s=3, but
this pole lies on the ﬁOn physical Riemann sheet and need not be considered.
The Laplace inversionvintegral for either u(0,s) or v(0,s) is then a straight
vertical line in the right half s plane. Closing this contour in the left
half plane; one finds, as usual, that the large semicircle gives a zero
contribution, with contributions coming from the branch cﬁt and the pole at
s=0. Defining a new integration variable £=-s, we find, omitting the alge-

braic detail,

23 (e 1 - ,
u(0,7) = 1 - Tfo EdD Gpe™ 5 : )
vo,0 =1 - 23 ds[m 1 e . (43)

These integrals must be performed numerically} To remove the integrable
singularity at £=0 in Eq. (42), we change integration variables according
to €=n2, and find

u(0,t) = i - ﬁfld (a-n)- ”2)% ™’ , (44)
T (3+n2) -

a form suitable for numerical integration. Equation (43) has integrable

singularities at both £=0 and £=1. To remove these, we note
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[EQ-8)17% = [(1-6)/€]% + [g/(1-6)7% , | (45)

and change integration variables according to £=n2 in the first term and

1-£=n2 in the second. This gives

o2
v(O‘t)-l-4/—f “"’e

(3+n )
4/_—[ dn (1- n) -T(ll-nz) . (46)
(4-n )
or,
. /_ 25 2
v(0,1) = u(0,1) - .4_"§.f dn -(1_.7.7..._)_ -T(1-n%) ; (47)
; 0 (4-n )

which shows, as expected on physical grounds, that the material field always
lags behind the radiation field. Both Eqs. (44) and (46) can be integrated
analytically for 1=0, and one finds results consistent with Eqs. (37) and
(38), providing a partial check on these integral expressions.

The flux of radiation is given by

dE_(z,1)
Fz,t) = - = T2, - (48)

or, if we introduce the dimensionless variables X and T, and define

wix,r) = Hot) (49)
Tinc
we have
W(x,T) = - 7‘;9“—(5’5(& : | (50)

Laplace transforming this result, and using Eq. (29) for u(x,s), we find

for e=0 that the Laplace transform of the surface flux is given by

w(0,s) = . (51)

14



By examining the small and large s behavior of Eq. (15), we find

w(0,T) = 0, : (52)
500 :
. ) 4 v
w(0,0) = — . (53)
V342 ’

The infinite time limit is just a manifestation that at infinite time
the entire halfspace is at a constant temperature with a uniform radia-
tion field [see Eq. (33)] and hence there is no gradient and no flux.
At 1=0, physically one should find that all of the impinging radiation
is absorbed; with no reradiation because the material is cold. That is,
we should have wt0,0) = 1, whereas Eq. (53) states
w(0,0) = 1.0718 | ~ ' (54)

This 7% error is associated wifh the Marshak boundary condition applied
to the P-1 approximation, Eq. (2), as has been discussed in detail recent:
1y(4). : :

For a general value of 17, we invert Eq. (51) in a manner similar to

our previous inversions of u(0,T) and v(0,7). In this case, however, there

is no pole at s=0. We find

2
w(0,1) = 8/_[ (1-n ) e-Tn . (55)
(3+n°)

We note the similarity of this result to that for u(0,T) as given by Eq.

(44). Combining these two results, we have
u(0,7) + 7 w(0,7) =1, | (56)

which is just a restatement of the Marshak boundary condition, Eq. (18},
as can be seen by using the definition of w(x,T), Eq.v(SO), in Eq. (56).
Of perhaps more interest than these surface quantities are the
intcgrated radiation and material energies in the slab as a function of

time. We define these integral quantities as

15




4

o af, o .
dzE_(z,t) = ( ”“:)f dxu(x,t) , 57
a’; r V3k JO * . _ e

&,(1)

and

a94

2| arte = Y | g . | (58)
4 Jo 0

- & _(T1)
m 4/3k

We define dimensionless integral energies wr(t) and wm(T) as

¥_(1) %) (59)
=
81‘
& (1) ‘ ,
wm(T) = g(o) > ) (60)
where
4
af.
&) = — (61)
K
4
ab.
&y =k (62)
K

Physically, <€£0) is the radiation energy in a slab of thickness one diffu-

sion length (/gk)'l with a uniform radiation temperature ein Likewise,

c
<?£0) is the material energy in a slab of thickness one diffusion length

with a uniform material temperature einc’ Combining Eqs. (57) through (62)

we have
V() = fo dxu(x,T) , | : (63)
V(0 = J; dxv(x,1) . (64)

To compute these integrals, we Laplace transform Eqs. (63) and (64),
use Eqs. (29) and (30) for u(x,s) and v(x,s), setting e=0, and perform the

indicated integrals over x. We find
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V3(s+1)

¥ (s) = , (65)
T s(/3s(s+1) + 2s)
and |
V() = 7 (66)
s(¥3s(s+1)+2s)
Examining the large s (small T) limit of thgse expressions, we find
V3
v_(0) = ; (67)
T V3+2
¥ (0) =0, (68)
which are correct [see Eqs. (37) and (38)]. For small s we find
- - -3/2
b(s) » w(s) > 57 - - (69)
s+ s+0 '
and hence we have
V(1) > oy () > AT, | (70)
T T4

the familiar /T dependence.

To obtain the results for a general T, we once again close the inversion
contours in the left half plane, wrapping around the branch cuts coverlng
-1 <s <0, and integrating around a small circle centered at s=0. We note -
that near s=0 both wr(s) and wm(s) behave like s'3 [see Eq. (69)], and care
must be taken in evaluating the integrals near s=0. In particular, both the
branch cut contributions and the small circle contribution separately di-
. verge. Thus one must integrate the branch cut contributions from -1 to -6,
integrate around a small circle of radius § centered at s=0, analytically
combine the results, and then let § go to zero. The separate singularitiesv
in 8§ cancel, and the resulting combined integrals are finite. As earlier,
one must then make a change of variables fo put the results in a form

suitable for numerical integration. Omitting the considerable algebraic
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detail, we find

1 [ 2 .2 2
-n-3 - -
wr(r)=%fdn[2r+(7*“” Ly Lsyle™™ +%er-—é, (71)
1+ ﬁ_nz 3+n
and

1 4.2 2

¥y () =$,-f dnf2r + (A0 (L) ™ L 2T 7_2- (72)
0 1+ ﬁ_nz 3+n 3

For t=0, analytic integration of Eqs. (71) and (72) reproduces Eqs. (67)
and (68), and for large T, Eqs. (71) and (72) give the proper asymptotic
behavior, Eq. (70). Two additional checks on the accuracy of Eqs. (71) and

(72) can be made. First, it can be shown that these two results satisfy

e S Y_(1) - ¥ (1) (73)
oT T m ’

which is just the overall energy balance equation for the material, ob-
tained by integrating Eq. (16) over all x. Secondly, it can also be shown
that these two results, together with the result for w(0,t) given by Eq. (55),

satisfy

- B w,n = vym - v (74)

which is just the integral over x of the equation of transfer, Eq. (15),
with €=0.

Numerical results for the three surface quantities u(0,t), v(0,t) and
'w(0,T), given by Eqs. (44), (46), and (55), as well as the two integral
quantities wr(r) and wm(T), given by Eqs. (71) and (72), are given in
Table I. The values were computed by dividing the integration range
0 < n <1 for each integral into N equal intervals, and performing a 16
point Gauss quédrature in each interval. N was successively doubled until

the desired accuracy was achieved. The values in Table I were obtained by

18



specifying a fractional absolute error of 10'5 for each integral. " The

values given are believed to be accurate to the number of digits given.
Finally, one can, by inverting the transforms u(x,s) and v(x,s}, ob-

tain results for the radiation energy and material temperature fields.

The results are

2
u(x,t) =1 - 4/—'[ dn [ ]cos( NX_5e~™
(3+n ) / 2
) Ef dn[ (-’ ) ]sin(—% )e'Tnz (75)
n 3
0 (3+n ) /1_n2 ,
and
. 2
v(x,T) =1 - 4‘/_f dn ["1 le Jcos ( e~
(3+n°) /1 -n

o5 [Vl ol e

TECUE
1 2
- %f dn[—2L 5—]sin( L L (76)
0 n(3+n7) /1-n2

Numerical results for representative values of x and T are-given in Table II.
The same integration scheme as 'previously described was used to compute
these integrals. However, the oscillations in the integrand due to the
trigonometric functions made these integrals extremely hard to converge.
A looser convergence criteria of 10'4 was used, and even then, for small T,

values of N as large as 16,000 were required.
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: The Solution for €#0

One could repeat the inversion analysis for a non-zero véiue of € in
a straightforward way. The algebra, however, is very much morevcomplex.
For this reason, we restricted our attention for €#0 to the integral quan-
tities wr(T) and wm(r). These quantities are of primary interest in most
radiative transfer problems. Laplace transforming Eqgs. (63) and (64}, the
defining equations fbr,wr(T) and wm(T), using Eqs. (29) and (30) for u(x,s)

and v(x,s), integrating over x, and using Eq. (27) for B(s) yields

= V3(s+1)

Y _(s) = s (77)
r 53/2[1+s(s+1)]1/2{¢3(s+1) + 2/§[l+e(s+1)]1/2}
and
¥, (s) = 3 (78)

53/2[1+e(s+1)]1/2{J3(s+1) + 2/§[l+€(s+1)]1/2}
Examining the large s (small T) limit of these equations, we find

v_(0) =¥ (0) =0, | (79)

the physically correct limits. For small s we find

= " 1
s) + ¥ (s) - —377 » (80)
¥ s+0 © s+0 /Ives > 2 '

and hence we have the large time behavior
- 1/2

¥.(1) T-:m ¥ (D) T—; 2mmey] | (81)
Again we find the expected VT dependence for large times.

To invert Eqs. (77) and (78), we need identify the singularities of
the integrénds. These singularities are the same for each integral, and
include branch points at s=0, s=-1, and s=-(1+€)/c. The branches to be
used in the integration are again defined as those which give positive
square roots for s lying on the real positive axis. Extending all three

branch cuts along the negative real axis, we find cancellation of branch
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cuts for -(l+€)/e < s 5 -1. Thus we have effective branch cuts on the inter-
vals -® < s < -(1+€)/e and -1 <'s < 0. As for the €=0 case, care must be
taken in integrating near s=0 since the integrands vary as 5‘3/ 2 near s=0.

In addition, the integrands each have two simple poles at
1 2 /
s = -(39) [1 + 4 £ V1+56e+16e”] . (82)

However, both of these poles are easily shown to be on the nonphysical
Riemann sheet, and hence can be ignored.
Omitting the straightforward, but tedious, algebraic detail, the

results are

- f1 2

2 -Tn

P_ (1) - f dng_(t,n)e
r m/i+e JO T

1
6 -T T 2
-—e dnh_(M)exp[- ——5] - —, (83)
m [0 T e(l-nz) /3
and
1 2
: 2 -Tn 2 -T
Yy (1) = f dng_(1,n)e + e
m T/ive JO *n T/ive
+ 88 7T fldnh (Mexp[- ———] - 2 (84)
n o " e-nd) /3
where
2,1/2
(1-n)
h_ (n) = S , (85)
i [1+t~:(1-n2) ]3/2[3+(1+4e)n2-4en4]
h (n) = (1-n®)h () , (86)
1+4a(1-n2)
g,(Tom) = 2T + )

3+(4e+1)n2-4t—:n

3
[3+ (4e+1)n2-4en4] {[1+¢ (l-nz) ]

+

1/2 1/2

[1+s(1-n2)] +[(1+e)(1-n2)]l/2} ’

(87)
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g.(T,m) = (1-ndgy(t,m) + 2 . (88)

Numerical results were obtained from these equations with the previously
described integration routine, using a fractional convergence criteria
of 10°5. These results are given in Tables III and IV for a few representa-

tive values of €. We note, as expected, that the material field always lags

behind the radiation field.
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5. Concluding Remarks

We have presented in this paper an analytic solution to the Marshak
wave problem which should be a useful reference solution for validating
time dependent radiative transfer comfuter codes. The solution was ob-
tained in the form of finite integrals which had to be evaluated numeri-

4 for

cally. Typical numerical results were given to an accuracy of 10~
the pointwise, in space and time, distributions of the radiative energy
and material temperatures, and 10‘5 for surface quantities and integral
cnergy content.

It is hoped that in the future other such refefence solutions can be
gencrated. The goal should be to find solvable problems that represent
the relevant physics in more defail than the solution given here. This
goal may be elusive, however, due to the complexities, including compli-
cated eduafions, complicated functional forms, and nonlinearities, of the

underlying equations describing the time dependent radiative energy field

and its interaction and energy exchange with the material field.
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TABLE I

Surface and Integral Quantities for € = 0

t | u,n) v(0,1) w(0,1) v (%) v, (0
0.01 0.46534 0.00462 1.0693 0.46767 0.00463
0.02 0.46657 0.00921 1.0669 0.47122 0.00926
0.04 | 0.46903 0.01829 1.0619 0.47831 0.01847
0.07 0.47266 0.03167 1.0547 0.48891 0.03222
0.1 0.47624 0.04475 1.0475 0.49947 0.04588
0.2 0.48782 0.08638 1.0244 0.53429 0.09073
0.4 0.50941 0.16120 0.98117 0.60241 0.17754
0.7 0.53833 0.25547 0.92334 0.70098 0.30116
1.0 0.56368 0.33230 0.87264 0.79561 0.41774
2.0 0.62890 0.50386 0.74220 1.0869 0.76553
4.0 0.70709 0.65960 0.58581 1.5871 1.3335
7.0 0.76802 0.74905 0.46395 2.2074 2.0065
10. 0.80238 0.79164 0.39524 2.7321 2.5610
20. 0.85732 0.85362 0.28535 4.1198 3.9962
40. 0.89806 0.89676 | 0.20388 6.1443 6.0560
70. ' 0.92260 0.92204 0.15481 8.4091 8.3421
100 0.93512 0.93480 0.12975 | 10.232 10.176
200 0.95403 0.95391 0.09194 | 14.876 14.836
400 0.96746 0.96742 0.06508 | 21.464 21.436
700 0.97539 0.97537 0.04922 | 28.738 28.717
1000 0.97941 0.97940 0.04119 | 34.560 34.543
10000 0.99349 0.99348 0.01303 | 111.69 111.69
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TABLE II

Distributions fore = 0

u(x,t)
~ 0.1 0.4 1.0 | 4.0 10. 40.
0.1 | 0.4330 | 0.3253 | 0.1837 | 0.0146
0.4 | 0.4686 | 0.3646 | 0.2200 | 0.0168
1.0 | 0.5270 | 0.4298 | 0.2834 | 0.0310 | 0.0002
4.0 | 0.6820 | 0.6097 | 0.4801 | 0.1162 | 0.0034
10. 0.7853 | 0.7349 | 0.6380 | 0.2684 | 0.0252
40. 0.8992 | 0.8629 | 0.8106 | 0.5664 | 0.2176
100 0.9295 | 0.9127 | 0.8792 | 0.7159 | 0.4314 | 0.0043
v(x,t)
x 0.1 0.4 1.0 4.0 10. 40.
0.1 | 0.0406 | 0.0302 | 0.0169 | 0.0008
0.4 | 0.1472 | 0.1122 | 0.0651 | 0.0042
1.0 | 0.3073 | 0.2427 | 0.1511 | 0.0133
4.0 | 0.6320 | 0.5546 | 0.4214 | 0.0877 | o0.0021
10. 0.7737 | 0.7207 | 0.6195 | 0.2460 | 0.0206
40. 0.8878 | 0.8611 | 0.8082 | 0.5614 | 0.2120
100. 0.9292 0.8785 | 0.7146 | 0.4291 | 0.0042

0.9122
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TABLE I11

Integrated Radiation Energy ¥_ (1) for e#0

T NGE 0.1 0.4 1.0 4.0 10. 40. 100

0.01 0.06822 | 0.01937 | 0.00809 0.00210 | 0.00085 | 0.00021 | 0.00008
0.02 0.12147 | 0.03682 | 0.01569 0.00413 | 0.00168 | 0.00042 | 0.00017
0.04 0.20320 | 0.06826 | 0.03002 0.00809 | 0.00332 | 0.00085 | 0.00034
0.07 0.28807 0.10929 0.04990 0.01382 0.00573 | 0.00147 | 0.00059

0.1 0.34587 | 0.14495 | 0.06832 0.01938 | 0.00809 | 0.00210 | 0.00085
0.2 0.44901 | 0.23817 { 0.12215 0.03688 | 0.01570 | 0.00413 | 0.00168
0.4 0.53860 | 0.36009 | 0.20747 0.06862 0.03008 | 0.00809 | 0.00332
0.7 0.63451 | 0.47682 | 0.30489 | 0.11093 | 0.05020 | 0.01385 | 0.00573
1.0 | 0.72438 | 0.56563 | 0.38332 0.14906 | 0.06910 | 0.01943 | 0.00810
2.0 1.0008 0.81135 | 0.59159 0.25924 | 0.12654 | 0.03721 | 0.01576
4.0 1.4757 1.2260 | 0.92854 0.44315 | 0.22736 | 0.07030 | 0.03038

7.0 2.0649 1.7417 1.3480 0.67694 | 0.35986 | 0.11614 | 0.0S116

10. 2.5638 2.1793 1.70S8 0.88071 | 0.47837 | 0.15886 | 0.07096
20. 3.8839 3.3408 2.6616 1.4400 0.81408 | 0.28676 |0.13213
40. 5.8117 5.0420 4.0710 2.2889 1.3429 0.50338 | 0.24056
70. 7.9696 6.9498 5.6580 3.2630 1.9664 0.77493 | 0.38264
100 9.7070 8.4873 6.9393 4.0572 2.4825 1.0089 0.50913
200 14,133 12.407 10.211 6.1007 3.8278 1.6436 0.86557
400 20.414 17.971 ‘14.861 9.0225' 5.7726 | 2.5968 1.4240
700 27.349 24.117 19.999 12.261 7.9403 3.6834 2.0797
1000 32.900 29.036 24.113 14.857 9.6825 4.5664 2.6213
10000 106.44 94.221 78.645 49.325 32.892 16.516 ?0.148
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TABLE

IV

Integrated Material Energy ¢ (1) for e#0

T 0.1 0.4 1.0 4.0 10. 40. 100
0.01 >0.00036 0.00010 | 0.00004
0.02} 0.00131| 0.00038| 0.00016 | 0.00004 | 0.00001
0.04} 0.00454{ 0.00142} 0.00061 | 0.00016 | 0.00006 | 0.00001
6.07 0.01176 | 0.00402 | 0.00178 | 0.00048 | 0.00020 | 0.00005 | 0.00002
0.1 | 0.02083}{ 0.00767 | 0.00348 | 0.00096 | 0.00040 | 0.00010 | 0.00004
0.2 0.05747 | 0.02550| 0.01233 | 0.00357 0;00150 0.00039 | 0.00016
0.4 0.13771| 0.07636 | 0.04058 | 0.01263 | 0.00543 | 0.00144 0.00059
0.7 6.25490 0.16676 | 0.09765 | 0.03301 | 0.01459 | 0.00395 | 0.00162
1.0 | 0.36560 | 0.25953| 0.16232 | 0.05847 | 0.02642 | 0.00728 | 0.00301
2.0 0.69576 | 0.54559 | 0.38124 v0.15728 0.07489 0.02156 | 0.00906
4.0 1.2349 1.0158 0.75866 | 0.35205 | 0.17770 | 0.05405 | 0.02320
7.0 1.8741 1.5746 1.2119 0.60092 | 0.31659 | 0.10106 | 0.04430
10. 2.4011 2.0365 1.5890 0.81401 | 0.43945 | 0.14476 | 0.06440
20. 3.7664 3.2372 2.5761 1.3893 0.78321 | 0.27467 | 0.12625
40. 5.7276 4.9677 4.0093 2.2513 1.3192 0.49337 | 0.23544
70. 7.9057 6.8933 5.6108 3.2340 1.9477 0.76657 | 0.37818
100 9.6534 8.4399 6.8998 4.0327 2.4665 1.0015 0.50510
200 14.095 12.373 10.183 76.0831 3.8162 1.6380 0.86236
400 20.387 17.948 14.841 9.0100 5.7643 2.5926 1.4215
700 27.329 24.099 19.984 12.251 7.9339 3.6802 2.0777
1000 32.883 29.021 24.101 14.849 9.6772 4.5637 2.6196
10000 106.44 94.217 78.641 49.322 32.891 16.515 10.147
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